9 M ay 2 00 9 The hp - BEM with quasi - uniform meshes for the electric field integral equation on polyhedral surfaces : a priori error analysis ∗

نویسنده

  • Alexei Bespalov
چکیده

This paper presents an a priori error analysis of the hp-version of the boundary element method for the electric field integral equation on a piecewise plane (open or closed) Lipschitz surface. We use H(div)-conforming discretisations with Raviart-Thomas elements on a sequence of quasi-uniform meshes of triangles and/or parallelograms. Assuming the regularity of the solution to the electric field integral equation in terms of Sobolev spaces of tangential vector fields, we prove an a priori error estimate of the method in the energy norm. This estimate proves the expected rate of convergence with respect to the mesh parameter h and the polynomial degree p.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A priori error analysis of the BEM with graded meshes for the electric field integral equation on polyhedral surfaces

The Galerkin boundary element discretisations of the electric eld integral equation (EFIE) on Lipschitz polyhedral surfaces su er slow convergence rates when the underlying surface meshes are quasi-uniform and shape-regular. This is due to singular behaviour of the solution to this problem in neighbourhoods of vertices and edges of the surface. Aiming to improve convergence rates of the Galerki...

متن کامل

Convergence of the Natural hp-BEM for the Electric Field Integral Equation on Polyhedral Surfaces

We consider the variational formulation of the electric field integral equation (EFIE) on bounded polyhedral open or closed surfaces. We employ a conforming Galerkin discretization based on divΓ-conforming Raviart-Thomas boundary elements (BEM) of locally variable polynomial degree on shape-regular surface meshes. We establish asymptotic quasi-optimality of Galerkin solutions on sufficiently fi...

متن کامل

THE hp-VERSION OF THE BOUNDARY ELEMENT METHOD WITH QUASI-UNIFORM MESHES IN THREE DIMENSIONS

We prove an a priori error estimate for the hp-version of the boundary element method with hypersingular operators on piecewise plane open or closed surfaces. The underlying meshes are supposed to be quasi-uniform. The solutions of problems on polyhedral or piecewise plane open surfaces exhibit typical singularities which limit the convergence rate of the boundary element method. On closed surf...

متن کامل

Efficiency of a posteriori BEM-error estimates for first-kind integral equations on quasi-uniform meshes

In the numerical treatment of integral equations of the first kind using boundary element methods (BEM), the author and E. P. Stephan have derived a posteriori error estimates as tools for both reliable computation and self-adaptive mesh refinement. So far, efficiency of those a posteriori error estimates has been indicated by numerical examples in model situations only. This work affirms effic...

متن کامل

Adaptive Galerkin boundary element methods with panel clustering

In this paper, we will propose a boundary element method for solving classical boundary integral equations on complicated surfaces which, possibly, contain a large number of geometric details or even uncertainties in the given data. The (small) size of such details is characterised by a small parameter and the regularity of the solution is expected to be low in such zones on the surface (which ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009